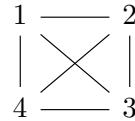


GROUP THEORY 2024 - 25, EXERCISE SHEET 2

Exercise 1. Warm up exercise

Consider the natural action of S_4 on the set X of all 2-elements subsets of $\{1, 2, 3, 4\}$. This action can be seen as permuting the edges of the following diagram



- (1) Determine the orbit of $\{1, 2\} \in X$;
- (2) Find the stabilizer of $\{1, 2\} \in X$;
- (3) Verify that the Orbit-Stabilizer theorem holds by recovering $|S_4|$ from the previous points.

Exercise 2. Action on cosets

Let G be a group and $H \leq G$ a subgroup. We define an action of G on G/H by

$$\begin{aligned} G \times G/H &\rightarrow G/H \\ (g, g'H) &\mapsto gg'H \end{aligned}$$

- (1) Show that this indeed defines a G -action;
- (2) For $gH \in G/H$, find the stabilizer $\text{Stab}_G(gH)$;

If X, Y are sets endowed with G -actions, we say that X and Y are isomorphic as G -sets if there exists a bijective function $f : X \rightarrow Y$ such that $f(g \cdot x) = g \cdot f(x)$ for all $g \in G$ and $x \in X$.

Exercise 3. Let H and K be subgroups of a group G . Define the action of G on the sets G/H and G/K by left multiplication (see Exercise 2). Show that G/H and G/K are isomorphic as G -sets if and only if H and K are conjugate subgroups of G , i.e. there exists $g \in G$ such that $gHg^{-1} = K$.

Exercise 4. Let $V = \mathbb{F}_2^3$ and $G = GL(V)$ the group of linear automorphisms of V (its elements are bijective linear maps $V \rightarrow V$).

- (1) Define a natural action of G on

$$X = \{W \subset V \mid \dim(W) = 2\}.$$

- (2) Show the action defined above is transitive;
- (3) Determine the cardinality $|X|$.

Exercise 5. (1) Let $G \leq S_n$. Consider its natural action on $\Omega = \{1, 2, \dots, n\}$. Show that if G acts transitively on Ω , then n divides $|G|$.

(2) Let G be a group and $X = \{H \leq G\}$ the set of subgroups of G . Show that G acts on X by

$$\begin{aligned} G \times X &\rightarrow X \\ (g, H) &\mapsto gHg^{-1}. \end{aligned}$$

For $H \in X$, what is the stabilizer $\text{Stab}_G(H)$?

Exercise 6. *p*-group actions and fixed points

Use the orbit-stabiliser theorem to prove the following result. Let $p > 0$ be a prime number and let G be a group of order p^n for some $n \geq 1$ which acts on a set X with $p \nmid |X|$. Show that there exists $x \in X$ such that $g \cdot x = x$ for all $g \in G$.